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Linear (planar) moleculesA andB which are identical except for isotopic substitutions
at the atomic sitesτ are considered. Stretching (bending, out-of-plane) frequenciesωk and
normal modes�k of the isotopically perturbed moleculeB are expressed in terms of stretch-
ing (bending, out-of-plane) frequenciesνi and the corresponding normal modes	i of the
unperturbed moleculeA. Complete specification of the unperturbed normal modes is not re-
quired. All that is needed are stretching (bending, out-of-plane) amplitudes〈τ |	i 〉 of the
normal modes	i at those sitesτ that are affected by isotopic substitution. The rule which
interlaces frequenciesωk of moleculeA with frequenciesνi of moleculeB is derived. Given
two isotopic moleculesA andBτ that differ by a single isotopic substitution at siteτ , the
inversion relation is derived. This relation expresses unperturbed stretching (bending, out-
of-plane) amplitudes at the siteτ in terms of stretching (bending, out-of-plane) frequencies
of moleculesA andBτ . As an example, out-of-plane vibrations of deuterated bromoethene
were considered. In the simplest method 12 out-of-plane frequencies of four polydeuterated
bromoethenes were calculated from 12 out-of-plane frequencies of bromoethene and three
monodeuterated bromoethenes. Standard deviation of thus calculated frequencies from ex-
perimental frequencies is
 = 2.74 cm−1. In another method, 15 out-of-plane frequencies
of four polydeuterated bromoethenes and selected monodeuterated bromoethene are calcu-
lated from 9 out-of-plane frequencies of bromoethene and the remaining two monodeuter-
ated bromoethenes. Depending on which monodeuterated bromoethene is selected (1-,cis-
or trans-), standard deviation of thus obtained frequencies from experimental frequencies is

1= 2.84 cm−1,
c = 2.96 cm−1 and
t = 2.72 cm−1.

KEY WORDS: vibrational isotope effect, harmonic approximation, stretching and bending
vibrations, out-of-plane vibrations, deuterated bromoethenes

1. Introduction

The aim of this and previous paper [1] is to provide a simple method for the cal-
culation of the vibrational isotope effect in the harmonic approximation. We assume the
unperturbed moleculeA to be rigid and to containn atoms. The perturbed moleculeB is
obtained from the unperturbed moleculeA by ρ isotopic substitutions at selected atomic
sites. If potential and kinetic energy is expressed in terms of the Cartesian coordinates
of atomic displacements, and in the harmonic approximation [2], vibrations of the un-
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perturbed molecule can be described by the generalised eigenvalue equation

F|	i〉 = λiM|	i〉, (1)

whereF is a 3n × 3n force field matrix, whileM is a 3n × 3n diagonal matrix which
on a diagonal contains atomic massesmi. Eigenvaluesλi of this eigenvalue equation are
related to the unperturbed frequenciesνi by

λi = 4π2ν2
i . (2)

In addition, unperturbed vibrations	i can be orthonormalized according to

〈	i |M|	j 〉 = δi,j . (3)

Usually one assumes that the force field is not affected by isotope substitutions [2].
In this approximation the perturbed eigenvalue equation is

F|�k〉 = εk(M+
M)|�k〉, (4)

where
M represents perturbation. Eigenvaluesεk of perturbed equation (4) are related
to perturbed frequenciesωk by the relation

εk = 4π2ω2
k. (2′)

We distinguish cardinalεk /∈ {λi} and singularεk ∈ {λi} solutions to the perturbed
equation (4) [1]. Each singular eigenvalueεk coincides with some unperturbed eigen-
valueλj , and such eigenvalues are relatively rare. Many systems have only cardinal and
no singular eigenvalues. In addition, treatment of singular solutions is similar though
not identical to the treatment of cardinal solutions [1]. Therefore, we will in this paper
concentrate on cardinal solutions. We will consider singular solutions only when this is
necessary in order to clarify some point in the discussion.

We use here the same notation as in [1]. In particular,
mµ denotes isotope
mass change of atomµ, while 〈µs|	i〉 denotes the amplitude of the unperturbed vi-
bration|	i〉 at atomµ in thesth coordinate direction.

2. Linear molecules

Relations obtained in [1] substantially simplify in the case of linear molecules.
We choosex-axis to point in the direction of the molecular axis. Hence,Ix = 0 and
Iy = Iz = I . Since each isotope atomτ is situated on thex-axis, one hasyτ = zτ = 0.
Further, relations (22) in [1] involve various terms of the typeyµyτ /Ix and yµzτ/Ix
which are formally 0/0. Proper analysis shows that one should neglect all terms that
contain moment of inertiaIx. In particular, this impliesRx = 0 in [1, equation (21b)].
In addition, due to symmetry, each vibration	i can be chosen to have nonvanishing
components either only alongx-axis, only alongy-axis, or only alongz-axis. Hence, one
can distinguish stretching vibrations, where all atom displacements are alongx-axis, and
bending vibrations, where all atom displacements are perpendicular to thex-axis, either
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in they- or in thez-direction. There aren − 1 stretching vibrations, since one degree
of freedom alongx-axis corresponds to translation in this direction. Due to rotational
symmetry bending vibrations are doubly degenerate. There aren−2 bending vibrations
in they-direction, andn− 2 bending vibrations in thez-direction. In each of these two
directions one degree of freedom is consumed by translation in this direction, and one
by rotation around another of these two axes. Due to this separation on bending and
stretching vibrations and sinceyτ = zτ = 0, one obtains

�µx,τy(ε) = �µx,τz(ε) = �µy,τz(ε) = 0

for the matrix elements of matrix�(ε) defined in [1]. This matrix is, hence, block-
diagonal matrix containing three blocks which refer to vibrations in thex-, y-, and
z-direction, respectively. Related relations accordingly factorise into three relations.

One, thus, obtains thatεxk /∈ {λxi } is a (cardinal) stretching eigenvalue of the per-
turbed system if and only if it is a root of the equation

f x(ε) ≡
∣∣∣∣�x(ε)+ 
M−1

ρ

ε

∣∣∣∣ = 0, (5a)

where�x is aρ × ρ Hermitian matrix with matrix elements

�x
µτ (ε) =

1

εM
+

n−1∑
i

〈µx|	x
i 〉〈	x

i |τx〉
ε − λxi

, (6a)

while
M−1
ρ is a diagonalρ × ρ matrix with matrix elements(
M−1

ρ )µτ = δµτ /
mτ .
Total mass of the unperturbed molecule is denoted byM.

Each stretching vibration�x
k corresponding to the eigenvalueεxk /∈ {λxi } is of the

form

�x
k =

1

εxk

√
M

ρ∑
τ

Cτ |	T x〉 +
n−1∑
i

∑ρ
τ 〈	x

i |τx〉Cτ
εxk − λxi

∣∣	x
i

〉
, (7a)

whereρ coefficientsCτ are components of the column vectorC, solution of the matrix
equation [

�x
(
εxk
)+ 
M−1

ρ

εxk

]
C = 0. (8a)

Each linearly independent solutionC to a matrix equation (8a) generates the cor-
responding stretching vibration (7a). One finds that the degeneracy of the stretching
eigenvalueεxk /∈ {λxi } equals the number of linearly independent solutionsC to (8a).
Further, each perturbed stretching vibration�x is according to (7a) a linear combination
of (n− 1) unperturbed stretching vibrations	x

i and a translation	T x in thex-direction
along molecular axis. The role of this translation is to compensate for the change in the
centre of mass caused by the isotope substitutions. The resulting vibration�x has no
translational component in thex-direction, i.e., it satisfies〈	Tx |M+
M|�x〉 = 0.
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Similar relations are obtained for bending vibrations�y and�z. Thus, each per-
turbed bending eigenvalueεyk /∈ {λyi } is a root of the equation

f y(ε) ≡
∣∣∣∣�y(ε)+ 
M−1

ρ

ε

∣∣∣∣ = 0, (5b)

where%y is aρ × ρ Hermitian matrix with matrix elements

�y
µτ (ε) =

1

ε

[
1

M
+ xµxτ

I

]
+

n−2∑
i

〈µy|	y

i 〉〈	y

i |τy〉
ε − λyi

(6b)

and whereI ≡ Iy ≡ Iz is the moment of inertia of the unperturbed molecule. Each
bending vibration�y

k corresponding to the eigenvalueεyk /∈ {λyi } is of the form

�
y

k =
1

ε
y

k

[
1√
M

ρ∑
τ

Cτ |	Ty〉 + 1√
I

ρ∑
τ

xτCτ |	Rz〉
]
+

n−2∑
i

∑ρ
τ 〈	y

i |τy〉Cτ
ε
y

k − λyi
∣∣	y

i

〉
, (7b)

where the coefficientsCτ are the components of the column vectorC, solution of the
matrix equation [

�y
(
ε
y

k

)+ 
M−1
ρ

ε
y

k

]
C = 0. (8b)

Again, degeneracy of the perturbed bending eigenvalueε
y

k /∈ {λyi } equals the num-
ber of linearly independent solutionsC to this matrix equation.

According to (7b) each bending vibration�y is a linear combination of(n − 2)
unperturbed bending vibrations	y

i , a translation	Ty in the y-direction, and a rota-
tion	Rz around thez-axis. The role of these nonproper vibrations is to compensate for
the change of the centre of mass and moment of inertia caused by the isotope substitu-
tions. The resulting vibration�y has no translation component in they-direction, and
no component of the rotation aroundz-axis, i.e., it satisfies〈	Ty |M + 
M|�y〉 = 0
and〈	Rz|M+
M|�y〉 = 0. While stretching vibrations�x contain only one transla-
tion which is required in order to compensate for the change of the centre of mass caused
by the isotope substitutions, bending vibrations besides the translation in the direction
of the bending contain also a rotation around the axis that is perpendicular to the direc-
tion of the bending. This difference is also reflected in the difference between matrix
elements (6a) and (6b).

3. Single isotopic substitution of linear molecules: interlacing rule and inversion
relations

Consider two linear isotopic moleculesA andBτ which are identical, except for a
single isotopic substitution at the atomic siteτ .
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Relations (5) and (6) now reduce to

f x(ε)≡
n−1∑
i

〈τx|	x
i 〉〈	x

i |τx〉
ε − λxi

+ 1

ε

[
1

M
+ 1


mτ

]
= 0, (9a)

f y(ε)≡
n−2∑
i

〈τy|	y

i 〉〈	y

i |τy〉
ε − λyi

+ 1

ε

[
1

M
+ x

2
τ

I
+ 1


mτ

]
= 0, (9b)

wherexτ is thex-coordinate of the isotope atomτ . Relation forf z(ε) is identical to the
relation forf y(ε), except that everywherey should be replaced byz.

Each rootεxk of f x(ε) = 0 determines a stretching frequencyωxk =
√
εxk /2π of the

isotope moleculeBτ , while each rootεyk of f y(ε) = 0 determines a bending frequency
ω
y

k =
√
ε
y

k /2π of this molecule. In this way one obtains all cardinal frequenciesωxk /∈
{νxi } andωyk /∈ {νyi } of the isotope moleculeBτ . In addition, relations (9) may produce
some singular (ωk ∈ {νi}) frequencies of the perturbed moleculeBτ . This may happen
only if the corresponding unperturbed frequencyνj is passive.

Once a particular perturbed frequency is known, one can obtain the corresponding
normal mode. Since quantities%x, %y and%z are no more matrices, vectorC in rela-
tions (8) reduces to a vector with only one component, and without loss of generality
this component can be chosen equal to one. With this choice relations (7) reduce to

∣∣�x
k

〉= 1

εxk

√
M
|	T x〉 +

n−1∑
i

〈	x
i |τx〉

εxk − λxi
∣∣	x

i

〉
, (10a)

∣∣�y

k

〉= 1

ε
y

k

[
1√
M
|	Ty〉 + xτ√

I
|	Rz〉

]
+

n−2∑
i

〈	y

i |τy〉
ε
y

k − λyi
∣∣	y

i

〉
. (10b)

In addition, one obtains [1]

〈
τx
∣∣�x

k

〉 = − 1

εxk
mτ
,

〈
τy
∣∣�y

k

〉 = − 1

ε
y

k
mτ
. (11)

According to relations (10), each rootεxk of f x(ε) as well as each rootεyk of f y(ε)
produces exactly one normal mode. Each stretching cardinal frequencyω

y

k /∈ {νyi } of Bτ
is, hence, nondegenerate in the space of stretching frequencies. Of course, this fre-
quency may coincide with some bending frequencyω

y

k′ of this molecule, but it does
not coincide with any other stretching frequency. Similarly, each bending cardinal fre-
quencyωyk /∈ {νyi } is nondegenerate in the space of bending frequencies{ωyk }. Here
again, this frequency may coincide with some stretching frequency. In addition, all
bending frequencies are doubly degenerate, since bending frequencies corresponding to
normal vibrations in directionsy andz that are perpendicular to molecular axis are iden-
tical: {ωyk } ≡ {ωzk}. However, restricted to the set{ωyk } of bending frequencies in the
y-direction, each cardinal frequencyωyk /∈ {νyi } is nondegenerate. Similarly, restricted to
the set{ωzk} of bending frequencies in thez-direction, each cardinal frequencyωzk /∈ {νzi }
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is nondegenerate. In conclusion, in the case of single isotopic substitutions of linear
molecules, only singular frequencies (if any) may be degenerate.

In order to analyse the general distribution of perturbed frequencies and proper-
ties of the corresponding normal modes, we have to complete the above analysis with
detailed description of singular solutions. This was done in more detail and for a gen-
eral case of an arbitrary molecule with a multiple isotopic substitutions in a previous
paper. If those results are specified to the case considered here, the following results are
obtained.

Consider first stretching vibrations. Let the unperturbed eigenvalueλxj be η-de-
generate and let|	x

jκ〉, κ = 1, . . . , η, be the corresponding normal modes.
If λxj is passive, that is, if〈τx|	x

jκ〉 = 0, κ = 1, . . . , η, then all the unperturbed
eigenstates|	x

jκ〉 are also the perturbed eigenstates. In addition, ifεxk = λxj is a root of
f x(ε), there is an extra eigenstate of the type (10a). In conclusion, if the unperturbed
eigenvalueλxj is passive andη-degenerate, the perturbed eigenvalueεxk = λxj is either
η- or (η + 1)-degenerate. It isη-degenerate iff x(λxj ) �= 0. Otherwise it is(η + 1)-
degenerate. In particular, one finds that all roots off x(ε), not only cardinal rootsεxk /∈{λxi }, are the eigenvalues of the perturbed equation, while (10a) are the corresponding
eigenstates.

If λxj is active and nondegenerate(η = 1), εxk = λxj is not an eigenvalue of the
perturbed system. Otherwise(η > 1), it is a (η − 1)-degenerate eigenvalue of the
perturbed system, and the corresponding eigenstates�x

k are linear combinations

�x
k =

η∑
κ

Dκ

∣∣	x
jκ

〉
, (12a)

where coefficientsDκ satisfy

η∑
κ

〈
τx
∣∣	x

jκ

〉
Dκ = 0. (12b)

This completes the description of singular eigenvalues and eigenstates. In partic-
ular, degeneracy of each singular eigenvalueεxk = λxj can decrease (increase) only by
one relative to the degeneracy of the unperturbed eigenvalueλxj , while each cardinal
eigenvalueεxk /∈ {λxi } is nondegenerate. Identical results are obtained for the bending
vibrations.

From equations (9) one can derive two important results. The first is the interlacing
relation, which interlaces perturbed and unperturbed frequencies. The second is the in-
version relation that enables calculation of unperturbed amplitudes at the site of isotopic
substitution from known unperturbed and perturbed frequencies.

In general, if in a mechanical system that exhibits harmonic oscillations one in-
creases the mass of one or few particles without changing the potential energy, the fre-
quencies of normal vibrations do not increase [3]. These frequencies either decrease or
remain the same. In particular, if frequenciesνi of the initial moleculeA are arranged
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in the increasing order, and if frequenciesωk of the heavier isotopic moleculeB are also
arranged in the increasing order, then [3]

ω1 � ν1, ω2 � ν2, . . . , ω3n−5 � ν3n−5. (13)

The above order rule applies to such pairs of isotopic moleculesA andB where all
substituted isotopes in the moleculeB are heavier than the corresponding isotopes in the
moleculeA. Relation (13) involves all frequencies of such isotopic molecules. However,
since in the case of linear molecules stretching and bending vibrations separate, this rule
applies separately to stretching and separately to bending frequencies.

We will now derive the so-called interlacing rule. It applies equally to stretching
as well as to bending frequencies. The interlacing rule implies the order rule, but it
also imposes much stronger restriction to the range of possible values of frequenciesνi
andωk.

Consider again linear isotopic moleculesA andBτ that differ in a single isotopic
substitution at the siteτ . Assume that moleculeBτ is heavier from moleculeA, i.e.,

mτ > 0. Since〈τx|	x

i 〉〈	x
i |τx〉 � 0 functionf x(ε) has a negative derivative for

eachε /∈ {λxi }. In each pointε = λxi this function is singular, unless the unperturbed
eigenvalueλxi is passive. This function is also singular in the pointε = 0. There is,
hence, exactly one root off x(ε) in each open interval(λxi , λ

x
j ) whereλxi < λxj are two

consecutive active eigenvalues. This applies also to the interval(0, λxs ), whereλxs is the
smallest active eigenvalue. Hence, if all unperturbed proper eigenvaluesλxi are active
and nondegenerate, one finds

0< εx1 < λx1 < εx2 < λx2 < · · · < εxn−1 < λxn−1.

The(n− 1) eigenvaluesεxi of the perturbed equation are, thus, interlaced with the
(n − 1) eigenvaluesλxi of the unperturbed equation. Due to relations (2) and (2′) this
interlacing rule also holds for the corresponding stretching frequencies. Analogous rule
is obtained for the bending frequencies.

The above interlacing rule is derived under the assumption that all the unperturbed
eigenvalues are active and mutually distinct. These conditions can be relaxed [4]. If
the eigenvalue equation (1) has some degenerate and/or passive eigenvaluesλi, one can
always consider an infinitesimal variation of the matrix elements of the force field ma-
trix F such that the resulting eigenvalue equation has all eigenvalues distinct and active.
According to the above analysis, all eigenvalues of this slightly perturbed eigenvalue
equation should satisfy the above interlacing condition. However, each eigenvalue of
the eigenvalue equation (1) is a continuous function of all the matrix elements of the
matrix F, and hence, one derives:

Interlacing rule. Consider twon-atom linear moleculesA andBτ , which differ by a
single isotopic substitution at atomic siteτ . Let moleculeBτ be heavier than mole-
culeA, and letνi andωk be proper stretching (bending) frequencies of moleculesA
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andBτ , respectively. Arrange these frequencies in the nondecreasing order. Then, these
frequencies are interlaced according to

0 � ω1 � ν1 � ω2 � ν2 � ω3 � ν3 � · · · . (14a)

One easily finds the condition for a strict inequality to apply. If the two successive
unperturbed stretching (bending) frequenciesνi andνi+1 are degenerate, one hasνi =
ωi+1 = νi+1. If the two successive unperturbed stretching (bending) frequenciesνi and
νi+1 are distinct and active, one has strict inequalityνi < ωi+1 < νi+1, etc.

One can generalise this interlacing rule to the case of the multiple isotopic sub-
stitutions. For example, ifA andB are two linear isotopic molecules that differ by two
isotopic substitutions, one can consider the transition from a moleculeA to a moleculeB
in two steps: from moleculeA to the intermediate moleculeC, and from moleculeC to
moleculeB. In each step only a single isotopic substitution is performed, and hence,
to each step interlacing rule (14a) applies. Assume, for example, that both isotopes are
heavier in moleculeB. In this case moleculeC is heavier from moleculeA, and mole-
culeB is heavier from moleculeC. Hence, ifν′i are nondecreasing stretching (bending)
frequencies of moleculeC, the interlacing rule (14a) impliesνk−1 � ν′k � νk (transition
from A to C) and ν′k−1 � ωk � ν′k (transition fromC to B). Combining these two
results one finds the interlacing conditionνk−2 � ωk � νk. Similarly, if one of these two
isotopes is heavier in moleculeA, while another is heavier in moleculeB, one finds the
interlacing conditionνk−1 � ωk � νk+1, etc. In this way one can generalise the interlac-
ing rule to all multiple isotopic substitutions. Each such multiple isotopic substitution
can be considered as a sequence of single isotopic substitutions. The introduction of
each new isotope can shift (ordered) perturbed frequenciesωk relative to the (ordered)
unperturbed frequenciesνi only by one place. The direction in which this shift is per-
formed (lowering or increasing these frequencies) depends on whether the isotope mass
change is positive or negative. One thus finds:

Generalised interlacing rule. Consider twon-atom linear moleculesA andB which
differ by ρ isotopic substitutions. Letη isotopes be heavier in moleculeB, and let
(ρ − η) isotopes be heavier in moleculeA. Let furtherνi andωk be proper stretching
(bending) frequencies of moleculesA andB, respectively. Arrange these frequencies in
the nondecreasing order. Then, these frequencies are interlaced according to

νk−η � ωk � νk+ρ−η. (14b)

Forη = ρ = 1 this relation reduces to (14a).

The interlacing relation (14b) implies order rule (13). However, the interlacing
relation is more restrictive. Thus, ifA andBτ are two linear molecules that differ by a
single isotopic substitution at siteτ , and ifωk is kth perturbed frequency, the order rule
restricts this frequency only from above (ωk � νk), while the interlacing rule restricts it
from above as well as from below (νk−1 � ωk � νk). In addition, the order rule applies



T.P. Živković / Vibrational isotope effect of linear and planar molecules 295

Table 1
Experimental [3] frequencies (cm−1) for acetylene

and deuterated acetylenes.

Vibration type C2H2 C2HD C2D2

1 ++g 3372.5 3335.62 2703.8
2 ++g 1973.5 1853.78 1764.2
3 ++u 3287 2583.6 2427
4 ,g 613.5 518.38 511.12
5 ,r 729.1 677.77 539.1

only to such pairs of isotopic moleculesA andB where all substituted isotopes in one
molecule are heavier from the corresponding isotopes in another molecule. Generalised
interlacing rule has no such restriction. This rule applies to all pairs of linear isotopic
moleculesA andB, regardless of the relative mass of various isotopic substitutions.
Since it is more restrictive and more general, the interlacing rule can be used to facilitate
frequency assignments of various isotopomers.

As an example of the validity of the interlacing rule, consider acetylene and deuter-
ated acetylenes. Experimental stretching and bending frequencies of acetylene C2H2

(d0) and deuterated acetylenes C2HD (d1) and C2D2 (d2) are shown in table 1.
Vibrations of the symmetry type+ are stretching vibrations, while vibrations of

the symmetry type, are bending vibrations. One can easily verify that all these vi-
brations satisfy interlacing rule. For example, the stretching vibrations of acetylene
C2H2 and deuterated acetylene C2HD that differ by a single isotopic substitution sat-
isfy 1853.78(d1)< 1973.5(d0)< 2583.6(d1)< 3287(d0)< 3335.62(d1)< 3372.5(d0)
in accord with (22a). Also, the bending frequencies of these two molecules satisfy
518.38(d1)< 613.5(d0)< 677.77(d1)< 729.1(d0) in accord with (14a). Similar agree-
ment is obtained if one compares stretching and bending frequencies of C2HD and C2D2.
However, if one compares stretching frequencies of isotopic molecules C2H2 and C2D2

that differ by a double isotopic substitution, one finds that these frequencies do not satisfy
the interlacing relation (14a) that applies to a single isotopic substitution: 1764.2(d2)<

1973.5(d0)< 2427(d2)< 3287(d0) ? 2703.8(d2)< 3372.5(d0). However, these fre-
quencies do satisfy the generalised interlacing rule. Namely, one finds 1973.5(d0)<

2703.8(d2)< 3372.5(d0), in accord withνk−2 � ωk � νk, as required by (14b).

Inversion relations. Another consequence of the relations (9) are the inversion rela-
tions. Using these relations one can deduce squares of the unperturbed amplitudes
〈τx|	x

i 〉(〈τy|	y

i 〉) at the substitution siteτ from the unperturbed and perturbed stretch-
ing (bending) frequencies of isotopic moleculesA andBτ .

Consider, for example, stretching frequencies. Assume that all the unperturbed
eigenvaluesλxj are nondegenerate and active. In this case all perturbed eigenvaluesεxk are
roots off x(ε). There are exactly(n − 1) mutually distinct unperturbed eigenvaluesλxj
and also exactly(n − 1) mutually distinct perturbed eigenvaluesεxk . In addition, all
perturbed eigenvalues differ from all the unperturbed eigenvalues and these eigenvalues
are interlaced according to (14a).
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Define matrixAx and column vectorsXx and�x

Ax
k,i =

1

εxk − λxi
, Xx

k = −
1

εxk

[
1

M
+ 1


mτ

]
, �x

i =
〈
τx
∣∣	x

i

〉〈
	x
i

∣∣τx〉. (15a)

According to (9a), matrixA ≡ Ax and vectorsX ≡ Xx and � ≡ �x satisfy
A� = X. Hence, and provided matrixA ≡ Ax is nonsingular,

� = A−1X. (16)

This is the inversion relation. Using this relation one can calculate squares�i ≡ �x
i

of the unperturbed stretching amplitudes at the isotope siteτ from the stretching unper-
turbed frequenciesνxi and the stretching isotopic frequenciesωxk .

The inversion relation (16) is derived under the assumption that all the unperturbed
frequencies are nondegenerate and active. These conditions can be relaxed. For example,
if the unperturbed frequencyνxj is η-degenerate and if|	x

jκ〉, κ = 1, . . . , η, are the
corresponding normal modes, one has to replace the coefficient�x

j in relation (15a)
with a more general expression

�x
j =

η∑
κ

〈
τx
∣∣	x

jκ

〉〈
	x
jκ

∣∣τx〉. (17a)

Also it follows from the relation (9a) that if a particular unperturbed eigenvalueλxj
is passive, component�x

j of a vector�x equals zero, and this eigenvalue should not be
included in the construction of a matrixAx and vectorsXx and�x.

In conclusion, in choosing the set{λxi }τ of unperturbed eigenvaluesλxi and the set
{εxk }τ of perturbed eigenvaluesεxk that are required for the construction of the matrixA
and vectorX, the following rule applies: the set{λxi }τ should contain all mutually dis-
tinct and, relative to the substitution siteτ , active unperturbed stretching eigenvalues.
In particular, if all the unperturbed eigenvalues are active and nondegenerate, the set
{λxi }τ coincides with the set{λxi }. The set{εxk }τ should contain mutually distinct per-
turbed stretching eigenvalues that are strictly interlaced with the unperturbed eigenval-
uesλxj ∈ {λxi }τ . If between any two successive eigenvaluesλxl < λxl+1 contained in the
set{λxi }τ there are two or more perturbed eigenvaluesεxk ∈ {εxk }, one should include in
the set{εxk }τ the perturbed eigenvalueεxk which does not coincide with any unperturbed
eigenvalueλxj ∈ {λxi }. According to the above analysis there is at most one perturbed
eigenvalue that satisfies this condition. We say that the set{εxk }τ obtained in this way
is complementaryto the set{λxi }τ . Since the sets{λxi }τ and{εxk }τ are strictly interlaced
they contain the same number of elements, and the matrixA is a square matrix. The
inversion relation now produces coefficients�x

i (relation (17a)). Each coefficient�x
i

is a squared amplitude (or sum of such squared amplitudes) of the unperturbed normal
mode (or modes) at the siteτ of isotopic substitution.
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The inversion relation applies also to the bending frequencies of linear molecules.
One finds that in the case of bending frequences the matrixA ≡ Ay and vectorsX ≡ Xy

and� ≡ �y are

Ay

k,i =
1

ε
y

k − λyi
, Xy

k = −
1

ε
y

k

[
1

M
+ x

2
τ

I
+ 1


mτ

]
, (15b)

�
y

j =
η∑
κ

〈
τy
∣∣	y

jκ

〉〈
	
y

jκ |τy
〉
. (17b)

The inversion relations suggest a systematic method to obtain frequencies and nor-
mal modes of all isotopomers of a given linear molecule. All one needs are experimental
frequenciesνi of unperturbed molecule, and various sets{ωk}τ of experimental frequen-
cies of monosubstituted moleculesBτ .

Consider a linear moleculeA and a set of monosubstituted linear moleculesBτ ,

τ = 1,2, . . . . Each moleculeBτ is identical to the moleculeA, except for a single
isotopic substitution at siteτ . Let {νi}τ be the set of all mutually distinct and (relative
to the substitution siteτ ) active stretching (bending) frequencies of a moleculeA. Let
the set{ωk}τ containing distinct stretching (bending) frequencies of a moleculeBτ be
complementary to the set{νi}τ . Each set{ωk}τ contains the same number of elements
as the corresponding unperturbed set{νi}τ . Using the relation (16), where the matrixA
and vectorX are defined in terms of frequencies{νi}τ and{ωk}τ , one obtains vector�
that determines amplitude squares〈τ |	i〉2 (or, in the case of degeneracy, sum of such
amplitudes) of unperturbed stretching (bending) normal modes at the substitution siteτ .
In this way, by using only experimental frequencies of monosubstituted moleculesBτ ,
one can obtain amplitude squares of unperturbed vibrations at all atomic sites of inter-
est. According to relations (5)–(8), in order to obtain stretching (bending) frequencies
and normal modes of a polysubstituted molecule with isotopic substitutions at sitesµ

andτ , one has to know a relative sign of amplitudes〈τ |	i〉 and〈µ|	i〉 at these sites, in
addition to absolute values of these amplitudes. These relative signs can be obtained in
various ways. In some cases relative signs of vibrational amplitudes are determined by
the symmetry [4]. Further, the orthonormality relation (3) substantially restricts possible
variations in these relative signs, and one can use these relations in order to single out
relative signs which are acceptable. In addition, these relations can be utilised in order
to decrease the number of experimental frequencies that are used in order to calculate
amplitudes〈τ |	i〉. Finally, one can use relatively crude model which is not required to
produce reliable absolute values of the amplitudes〈τ |	i〉 and〈µ|	i〉 at different sites,
but which is nevertheless good enough to produce relative signs of these amplitudes. Af-
ter these relative signs are obtained, one can calculate all stretching (bending) frequen-
cies and vibrations for any isotopomer. Thus, monosubstituted frequencies in conjecture
with molecular geometry and atomic masses completely determine all polysubstituted
frequencies and vibrations.
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We will postpone further discussion of the inversion relations to the treatment of
out-of-plane vibrations of planar molecules. Planar molecules are more complex than
linear molecules, and it is more instructive to see how this relation can be applied to the
out-of-plane vibrations of planar molecules, than to see how this relation applies to the
simpler case of stretching and bending vibrations of linear molecules.

4. Planar molecules

Consider now planar molecules. Choosez-axis to be perpendicular to the mole-
cular plane. Out-of-plane vibrations in thez-direction separate from the vibrations in
thexy-plane. There are(n− 3) out-of-plane vibrations in thez-direction, and(2n− 3)
in-plane vibrations in thexy-plane. Since each isotope is in the molecular plane, one
haszτ = 0, τ = 1, . . . , ρ. Hence, the corresponding relations in [1] simplify. One ob-
tains two sets of relations, one describing out-of-plane vibrations, and another describing
in-plane vibrations.

5. Out-of-plane vibrations of planar molecules

The following results are obtained for the out-of-plane eigenvaluesεzk and the cor-
responding normal modes�z

k of a planar molecule.
Each perturbed out-of-plane eigenvalueεzk /∈ {λzi } is a root of the equation

f z(ε) ≡
∣∣∣∣�z(ε)+ 
M−1

ρ

ε

∣∣∣∣ = 0, (5c)

where�z(ε) is aρ × ρ Hermitian matrix with matrix elements

�z
µτ (ε) =

1

ε

[
1

M
+ xµxτ

Iy
+ yµyτ

Ix

]
+

n−3∑
i

〈µz|	z
i 〉〈	z

i |τz〉
ε − λzi

, (6c)

while 
M−1
ρ is ρ × ρ diagonal matrix with diagonal matrix elements 1/
mτ . Con-

versely, each root off z(ε) is a perturbed out-of-plane eigenvalue.
If εzk /∈ {λzi } is an out-of-plane eigenvalue, each normal mode corresponding to this

eigenvalue is of the form

∣∣�z
k

〉 = 1

εzk

[
Tz|	Tz〉 + Rx|	Rx〉 + Ry|	Ry〉

]+ n−3∑
i

∑ρ
τ 〈	z

i |τz〉Cτ
εzk − λzi

∣∣	z
i

〉
, (7c)

where coefficientsTz, Rx andRy are [1]

Tz = 1√
M

ρ∑
τ

Cτ , Rx = 1√
Ix

ρ∑
τ

yτCτ , Ry = (−1)√
Iy

ρ∑
τ

xτCτ , (7d)
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and whereCτ are components of the nontrivial vectorC that is a solution of the matrix
equation [

�z
(
εzk
)+ 
M−1

ρ

εzk

]
C = 0. (8c)

The above relations produce all cardinal (εzk /∈ {λzi }) eigenvalues and all the cor-
responding normal modes of the perturbed system. In addition, these relations may
produce some singular (εzk ∈ {λzi }) eigenvalues. This may happen if the corresponding
unperturbed eigenvalueλzj = εzk is passive. In this case the corresponding normal mode
or normal modes is also of the type (7c). In addition, there may exist some other singular
eigenvalues and normal modes.

If there is only a single atom substituted by an isotope, the above relations simplify,
and one obtains

f z(ε) ≡
n−3∑
i

〈τz|	z
i 〉〈	z

i |τz〉
ε − λzi

+ 1

ε

[
1

M
+ x

2
τ

Iy
+ y

2
τ

Ix
+ 1


mτ

]
= 0 (9c)

in analogy to (9a) and (9b). Similarly, the relation (7c) simplifies to

∣∣�z
k

〉 = 1

εzk

[
1√
M
|	Tz〉 + yτ√

Ix
|	Rx〉 − xτ√

Iy
|	Ry〉

]
+

n−3∑
i

〈	z
i |τz〉

εzk − λzi
∣∣	z

i

〉
(10c)

in analogy to (10a) and (10b).
One finds that the out-of-plane frequencies of the planar molecules also satisfy

interlacing rule. In particular, ifA andBτ are two planar molecules which differ by
a single isotope substitution at an atomic siteτ , and if moleculeBτ is heavier than
moleculeA, then the out-of-plane frequenciesνzi of the moleculeA and the out-of-plane
frequenciesωzk of the heavier moleculeBτ are interlaced according to the relation (22a).
More generally, if planar moleculesA andB differ by ρ (ρ > 1) isotopic substitutions,
these frequencies are interlaced according to (14b). One also finds that the inversion
relation (16) applies to the out-of-plane vibrations. In the case of out-of-plane vibrations
matrix A ≡ Az and column vectorsX ≡ Xz and� ≡ �z are defined as

Az
k,i =

1

εzk − λzi
,

Xk =− 1

εzk

[
1

M
+ x

2
τ

Iy
+ y

2
τ

Ix
+ 1


mτ

]
,

(15c)

�z
i =

η∑
κ

〈
τz
∣∣	z

iκ

〉〈
	z
iκ

∣∣τz〉. (17c)

As in the case of linear molecules, the inversion relation suggests a systematic
method to obtain out-of-plane frequencies and normal modes of all isotopomers of a
given planar molecule. All one needs are the experimental out-of-plane frequenciesνi of
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the unperturbed moleculeA, and various complementary sets{ωk}τ of the out-of-plane
frequencies of monosubstituted moleculesBτ . For example, in the case of the benzene
molecule there are nine out-of-plane normal modes. Due to the symmetry, all hydrogen
positions are equivalent, and there is only one type of monodeuterated benzene. Hence,
the set of only 18 frequencies, nine benzene out-of-plane frequencies and nine mono-
deuterated benzene out-of-plane frequencies, is sufficient to calculate the out-of-plane
frequencies and normal modes for all bideuterated, trideuterated etc. benzene molecules.
In fact, due to high symmetry of benzene molecule, even that much information is not
needed, and it suffices to know only three out of nine monodeuterated frequencies [5].

It should be noted that another type of connection between vibrational frequen-
cies of isotopic molecules can be obtained by various isotopic rules. Of such rules are
known the product rule [6,7], the sum rule [8] and the complete isotopic rule [9,10].
For example, the complete isotopic rule concerns three isotopic molecules (A, B and
C). These molecules must be in a special relation: moleculeA is a plane molecule in
which two definite atoms form a symmetrically equivalent set.B is identical toA except
that one of these two atoms is exchanged for an isotope, andC is identical toA andB
except that both of these two atoms are exchanged for this isotope [9,10]. An example
is the set of three molecules: ethylene, ethylene-d1 andtrans-ethylene-d2. From the
known frequencies of the compoundsA andC one can now calculate frequencies of the
compoundB.

There are important differences between isotopic rules and suggested method.
All isotopic rules provide only the information about frequencies, while the suggested
method determines in addition the corresponding normal modes. Further, this method
produces in a systematic way out-of-plane (stretching, bending) frequencies of all iso-
topomers of a given planar (linear) molecule. All what is required are out-of-plane
(stretching, bending) frequencies of the unperturbed molecule and of the selected mono-
substituted molecules. In order to apply, for example, the complete isotopic rule, one
has to know frequencies of two isotopic moleculesA andC. These molecules differ in
a very special way. Only then one can obtain the frequencies of the third moleculeB

which is intermediate between moleculesA andC. Similar restrictions apply to other
isotopic rules.

6. Out-of-plane vibrations of deuterated bromoethenes

As an example of the application of the above results, consider the out-of-plane
vibrations of bromoethene and deuterated bromoethenes. The following bromoethene
parameters were used [3]:

rCC = 1.34 Å, rCBr = 1.86 Å, rCH = 1.07 Å, α(CCBr) = α(CCH) = 120◦.

In conjuncture with atomic masses as expressed in atomic units (mH = 1.0087,
mC = 12.011, andmBr = 79.909), these parameters determine molecular mass, mole-
cular geometry and moments of inertia of bromoethene molecule. We will express all
required quantities in the units of atomic masses and angstroms. In these units one finds
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Figure 1. Bromoethene molecule. The origin of the coordinate system is in the molecular center of mass,
andx- andy-axes coincide with molecular principal axes. Coordinate units are in angstroms.

Table 2
Experimental [3] out-of-plane frequencies (cm−1) for bromoethene and

monodeuterated bromoethenes.

Vibration C2H3Br CH2CDBr trans-CHDCHBr cis-CHDCHBr

10 942 802 485 541
544*

11 902 906 940 918*

906* 908*

12 583 551 811 797
808*

* liquid.

M = 106.9544,Ix = 9.6435 andIy = 117.4137, whereIx andIy are the moments of
inertia with respect to the two in-plane principal axes. In figure 1 bromoethene molecule
is shown with the centre of mass situated in the origin of the coordinate system, andx-
andy-axes chosen to be principal in-plane axes. In the following expressions we will
use notation as in figure 1 when referring to various atoms. For example,〈H1|	z

i 〉 will
denote the amplitude of the out-of-plane vibration	z

i at the position of the hydrogen
atom H1, etc.

There are three out-of-plane vibrations of bromoethene and deuterated bro-
moethenes. The corresponding frequencies are denoted asν10, ν11 andν12 [3]. In table 2
are given the experimental out-of-plane frequencies of bromoethene and monodeuterated
bromoethenes.

Using the inversion relation (16) with expressions (15c) for matrixA and a vec-
tor X, those frequencies determine the amplitude squares�i of the unperturbed out-
of-plane vibrations at the positions of the three hydrogen atoms. In particular, the
out-of-plane frequencies of bromoethene C2H3Br and monodeuterated bromoethene
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CH2CDBr determine squares〈H1|	z
i 〉2, the out-of-plane frequencies of bromoethene

andcis-CHDCHBr determine squares〈Hc|	z
i 〉2, while the out-of-plane frequencies of

bromoethene andtrans-CHDCHBr determine squares〈Ht|	z
i 〉2.

For some vibrations in table 2 two experimental frequencies are reported, one for
a liquid phase, and another for a gas phase. Given a choice, we use frequency obtained
in a gas phase as more reliable. Accordingly, in the following calculation we use gas
frequencies from table 2, with a single exception of the frequencyν11 = 918 cm−1 in the
case ofcis-CHDCHBr. This frequency is obtained in a liquid phase, and in [3] only this
value is reported. Using these experimental frequencies one first constructs matrixA and
vectorX according to (23c). Next one applies the inversion relation (16) to obtain ampli-
tude squares at the positions of the three hydrogen atoms. The corresponding amplitudes
are: 〈

H1
∣∣	z

10

〉 = 0.7215,
〈
Hc
∣∣	z

10

〉 = 0.6013,
〈
Ht
∣∣	z

10

〉=−0.1755,〈
H1
∣∣	z

11

〉 = 0.2085,
〈
Hc
∣∣	z

11

〉 = −0.4292,
〈
Ht
∣∣	z

11

〉=−0.6591,〈
H1
∣∣	z

12

〉 = 0.3437,
〈
Hc
∣∣	z

12

〉 = −0.3923,
〈
Ht
∣∣	z

12

〉= 0.6337.

(18a)

Inversion relation (16) determines only absolute values of the above amplitudes,
but not their signs. Without loss of generality, one can choose amplitudes〈H1|	z

i 〉 at the
position of the H1 hydrogen to be positive. Relative signs of the amplitudes on the other
two hydrogen atoms can be obtained in various ways. For example, normal mode|	z

10〉
is of the approximate vibration typeχCHBr

CH2
[3]. This suggests the amplitude〈Hc|	z

10〉
to be positive, and the amplitude〈Ht|	z

10〉 to be negative, in accord with relative signs
choosen in (18a). In this way relative signs of all amplitudes of the normal mode|	z

10〉
are fixed. In a similar way approximate vibration types of other two out-of-plane vibra-
tions may suggest possible relative signs for the amplitudes of these vibrations. There
is, however, a more systematic way to determine these relative signs.

Each out-of-plane vibration	z
i that appears in the equations (6c) and (7c) is by

assumption normalised and orthogonal to all other vibrations. In particular, each vibra-
tion	z

i is normalised and orthogonal to nonproper vibrations	Tz,	Rx and	Ry :〈
	Tz

∣∣M∣∣	z
i

〉 = 0,
〈
	Rx

∣∣M∣∣	z
i

〉 = 0,
〈
	Ry

∣∣M∣∣	z
i

〉 = 0, (19a)〈
	z
i

∣∣M∣∣	z
i

〉 = 1. (19b)

Also, the three out-of-plane vibrations are mutually orthogonal:〈
	z

10

∣∣M∣∣	z
11

〉 = 0,
〈
	z

10

∣∣M∣∣	z
12

〉 = 0,
〈
	z

11

∣∣M∣∣	z
12

〉 = 0. (19c)

In order to give a complete description of the three out-of-plane bromoethene vi-
brations, we have to determine 18 quantities, the amplitudes at six atoms for each of
the three out-of-plane vibrations. The inversion relation (16) provides absolute values
of nine amplitudes (18a), while relations (19) provide additional 15 conditions. Thus,
we have a mathematically overdetermined system. If there is no error in experimental
frequencies utilised to obtain amplitudes (18a) and provided harmonic approximation
is valid, all relations (19) must be satisfied exactly. Thus, the degree to which these



T.P. Živković / Vibrational isotope effect of linear and planar molecules 303

relations can be simultaneously satisfied is a measure of the mutual consistency of ex-
perimental data and/or validity of the harmonic approximation.

Fifteen conditions (19) are more than sufficient to fix relative signs of hydrogen
amplitudes (18a). In addition, besides amplitudes (18a) on hydrogen atoms, these con-
ditions determine the remaining vibrational amplitudes on two carbon atoms and on the
bromium atom.

After some algebra one finds that conditions (19a) are equivalent to the matrix
relation

Y = �−1UH, (20a)

where

H =
(H1

Hc
Ht

)
, Y =

(C1
C2
Br

)
,

� =
[

mC mC mBr

xC1mC xC2mC xBrmBr

yC1mC yC2mC yBrmBr

]
, U =

[ 1 1 1
xH xHc xHt

yH yHc yHt

] (20b)

and where we use simplified notation H1= 〈H1|	z
i 〉, Hc = 〈Hc|	z

i 〉, Ht = 〈Ht|	z
i 〉,

C1 = 〈C1|	z
i 〉, C2 = 〈C2|	z

i 〉 and Br = 〈Br|	z
i 〉 in order to denote amplitudes of

the ith out-of-plane vibration	z
i at various atomic sites. The condition|U| = 0 is the

condition of the colinearity of the three hydrogen atoms, while the condition|�| = 0 is
the condition of the colinearity of two carbon atoms and a bromium atom. In the case of
bromoethene it is obviously|U| �= 0 and|�| �= 0 and the matricesU and� are, hence,
nonsingular. This guarantees the existence of the inverse�−1.

Relations (20) express amplitudes at the positions of two carbon atoms and
bromium atom in terms of the amplitudes at the positions of the three hydrogen atoms.
However, absolute values of the amplitudes at the positions of hydrogen atoms are ob-
tained from the inversion relation. We determine relative signs of these amplitudes
using remaining normalisation conditions (19b) and orthogonality conditions (19c).
Since without loss of generality amplitudes〈H1|	z

i 〉 at the position of the H1 hydro-
gen can be assumed to be positive, one has only to determine relative signs of the
amplitudes〈Hc|	z

i 〉 and 〈Ht |	z
i 〉 at the positions ofcis- and trans-hydrogens, respec-

tively.
The simplest way to proceed is to calculate normsNi = 〈	z

i |M|	z
i 〉 for each

possible combination of hydrogen amplitude signs, and to see how much these norms
differ from unity. Acceptable are only those sign combinations for which the norms do
not differ substantially from unity. For example, in the case of the vibration	z

10 one
obtains the following results for various possible sign combinations oncis- and trans-
positions: cis+trans+, N = 1.042; cis+trans−, N = 0.981; cis−trans+, N = 1.704;
cis−trans−, N = 1.712. NormsN = 1.704 andN = 1.712 are obviously in error,
while normsN = 1.042 andN = 0.981 are both in principle acceptable, since the
deviation from unity is not significant, and this deviation can be attributed to the exper-
imental error. Thus, we dismiss the signs combinationscis−trans+ andcis−trans− as
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unacceptable, while there is still ambiguity between the sign combinationscis+trans+
and cis+trans−. Similar results are obtained for the vibrations	z

11 and	z
12. In this

way the majority of the possible 64 sign combinations are eliminated. In order to
make a final choice between remaining ambiguous possibilities, we use the remain-
ing orthogonality conditions (19c). For example, in the case of the vibration	z

12,
there is an ambiguity between amplitude signscis−trans+ (N = 0.947) andcis−trans−
(N = 0.982). These results taken alone suggest that the sign combinationcis−trans−
is preferable to the sign combinationcis−trans+. However, if for both options one
calculates overlaps with remaining two vibrations, one obtains〈	z

10|M|	z
12〉 = 0.145

and 〈	z
11|M|	z

12〉 = 0.940 for the first sign choice, and〈	z
10|M|	z

12〉 = 0.004 and
〈	z

11|M|	z
12〉 = −0.030 for the second sign choice. The sign choicecis−trans− is

obviously in error. Such analysis finally leads to the sign combination as given in
equation (18a). Once the amplitudes on hydrogen atoms are determined, the ampli-
tudes on the remaining three atoms are obtained from relation (20). In this way one
finds〈

C1
∣∣	z

10

〉 = −0.0659,
〈
C2
∣∣	z

10

〉 = −0.0277,
〈
Br
∣∣	z

10

〉 = −0.0004,〈
C1
∣∣	z

11

〉 = −0.0592,
〈
C2
∣∣	z

11

〉 = 0.1341,
〈
Br
∣∣	z

11

〉 = −0.0001,〈
C1
∣∣	z

12

〉 = −0.1443,
〈
C2
∣∣	z

12

〉 = 0.0291,
〈
Br
∣∣	z

12

〉 = 0.0099.
(18b)

The above simple method of determining relative signs of vibrational amplitudes
can be done in a more systematic way. As a quantitative measure of the deviation from
the conditions (19b) and (19c) one can define a quantity


2 =
∑

i (〈	z
i |M|	z

i 〉 − 1)2+ 〈	z
10|M|	z

11〉2+ 〈	z
10|M|	z

12〉2 + 〈	z
11|M|	z

12〉2
6

.

(21)
Due to (20) remaining conditions (19a) are guaranteed to be satisfied. We now investi-
gate in a systematic way all possible combinations of amplitude signs atcis- andtrans-
hydrogens for all three vibrations, and we choose the absolute minimum. There are 64
such combinations, and one obtains a minimum value of
 = 0.041 for the sign combi-
nation:	z

10: cis+trans−, 	z
11: cis−trans− and	z

12: cis−trans+. This result is in accord
with the above more simple approach. All other possible sign combinations produce
substantially larger values for
. The next smallest value is
 = 0.090.

In conclusion, in this simple method one obtains vibrational amplitudes (18) from
the experimental out-of-plane frequencies of bromoethene and three monodeuterated
bromoethene molecules.

Once the vibration amplitudes (18) are obtained, one can use relations (5c)–(8c)
to derive frequencies and vibrations for all possible bromoethene isotopomers. In par-
ticular, if vibrations for deuterated bromoethenes are required, only amplitudes (18a) on
hydrogen atoms are needed.

Table 3 gives the frequencies of deuterated isotopomers that were calculated in
this way. Thus, all theoretical frequencies of polydeuterated bromoethenes in table 3
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Table 3
Comparison of theoretical (LRP) and experimental [3] out-of-plane frequencies (cm−1) for polydeuterated
bromoethenes. LRP frequencies were calculated using 12 out-of-plane frequencies of bromoethene and

monodeuterated bromoethenes (see table 2).

10 11 12
Exp. Calc. Diff. Exp. Calc. Diff. Exp. Calc. Diff.

CD2CHBr 465 464.1 −0.9 724 730.8 6.8 871 870.0 −1.0
723*

cis-CHDCDBr 719 719.1 0.1 872 871.2 −0.8 476 476.6 0.6
716* 864*

trans-CHDCDBr 691 692.9 1.9 856 858.3 2.3 532 531.3−0.7
533*

CD2CDBr 462 461.4 −0.6 732 737.6 5.6 691 691.2 0.2
730*

* liquid.

were obtained using the experimental frequencies of bromoethene and monodeuterated
bromoethenes given in table 2.

The agreement between theoretical and experimental frequencies is very good. Es-
pecially good is the agreement with experimental gas frequencies, which is consistent
with acceptance of these frequencies as more reliable. A standard error for all calculated
frequencies in table 3 from the experimental gas frequencies is only
 = 2.74 cm−1.

Once a particular perturbed eigenvalue is calculated, one can obtain the corre-
sponding vibration or vibrations from relations (7c) and (8c). For the sake of simplicity,
we do not report these perturbed vibrations here.

In the above derivation of theoretical frequencies in table 3, the six conditions (19b)
and (19c) were used only as auxiliary conditions for the sole purpose of determining rel-
ative signs of various nonperturbed vibrational amplitudes. This is not very economical,
and these conditions can be used in a much more efficient way. This leads to a more
powerful method, albeit mathematically more complex.

Assume, for example, that we know out-of-plane frequencies of C2H3Br andcis-
and trans-CHDCHBr, but we have no knowledge of the out-of-plane frequencies of
CH2CDBr isotope. We can use the inversion relation in order to obtain amplitude
squares〈Hc|	z

i 〉2 and 〈Ht|	z
i 〉2 of the three out-of-plane vibrations at the positions

of cis- and trans-hydrogen atoms. Relations (20) eliminate all amplitudes at the two
carbon atoms and at the bromium atom, and we are left with six conditions (19b)
and (19c) in three unknown amplitudes〈H1|	z

i 〉. We solve these equations by min-
imising standard deviation (21). Since the inversion relation does not give any clue
about signs of the amplitudes〈Hc|	z

i 〉 and〈Ht |	z
i 〉, one has to repeat this calculation

for all possible sign combinations. Each sign combination produces a different value
for a standard deviation (21). From all possible sign combinations one chooses that
one which produces the smallest value of
. One, thus, again obtains a sign com-
bination as given in relation (18a). For this sign combination one finds
 = 0.028,
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Table 4
Comparison of theoretical (LRP) and experimental [3] out-of-plane frequencies (cm−1) for monodeuter-
ated bromoethene CH2CDBr and polydeuterated bromoethenes. LRP frequencies were calculated using
nine experimental out-of-plane frequencies of bromoethene C2H3Br and cis- and trans-monodeuterated

bromoethenes CHDCHBr (see table 2).

10 11 12
Exp. Calc. Diff. Exp. Calc. Diff. Exp. Calc. Diff.

CH2CDBr 802 801.0 −1.0 906 907.3 1.3 551 546.7 −4.3
908*

CD2CHBr 465 464.1 −0.9 724 730.7 6.7 871 869.9 −1.1
723*

cis-CHDCDBr 719 716.7 −2.3 872 875.7 3.7 476 476.7 0.7
716* 864*

trans-CHDCDBr 691 695.8 4.8 856 857.1 1.1 532 530.2−1.8
533*

CD2CDBr 462 460.5 −1.5 732 733.5 1.5 691 691.1 0.1
730*

* liquid.

and the corresponding amplitudes are〈
H1
∣∣	z

10

〉= 0.7192,
〈
Hc
∣∣	z

10

〉 = 0.6013,
〈
Ht
∣∣	z

10

〉=−0.1755,〈
H1
∣∣	z

11

〉= 0.2443,
〈
Hc
∣∣	z

11

〉 = −0.4292,
〈
Ht
∣∣	z

11

〉=−0.6591,〈
H1
∣∣	z

12

〉= 0.3685,
〈
Hc
∣∣	z

12

〉 = −0.3923,
〈
Ht
∣∣	z

12

〉= 0.6337,〈
C1
∣∣	z

10

〉=−0.0655,
〈
C2
∣∣	z

10

〉 = −0.0278,
〈
Br
∣∣	z

10

〉 =−0.0004,〈
C1
∣∣	z

11

〉=−0.0663,
〈
C2
∣∣	z

11

〉 = 0.1364,
〈
Br
∣∣	z

11

〉 = 0.0001,〈
C1
∣∣	z

12

〉=−0.1492,
〈
C2
∣∣	z

12

〉 = 0.0307,
〈
Br
∣∣	z

12

〉 = 0.0101.

(22)

The above amplitudes were obtained using only 9 experimental frequencies. Those
amplitudes slightly differ from the amplitudes (18) which were obtained using 12 exper-
imental frequencies. In particular, since in both approaches amplitudes〈Hc|	z

i 〉 and
〈Ht |	z

i 〉 were derived from the inversion relation using the same experimental data,
those amplitudes are the same in (18) and (22). However, amplitudes〈H1|	z

i 〉 at the
H1 hydrogen atoms slightly differ in (18) and (22). Also, all amplitudes on the re-
maining three atoms that were obtained using relation (20) slightly differ in these two
approaches.

Once the amplitudes (22) are derived, one can calculate the out-of-plane frequen-
cies and the corresponding normal modes for all bromoethene isotopomers.

The obtained results for deuterated bromoethenes are shown in table 4. The agree-
ment between thus obtained theoretical and experimental frequencies is again very good.
Though, unlike in the first simple method, in order to obtain theoretical frequencies in ta-
ble 4 we did not use experimental out-of-plane frequencies of CH2CDBr, standard devi-
ation of all thus obtained frequencies from the experimental values is
1 = 2.84 cm−1.
This differs insignificantly from the standard deviation
 = 2.74 cm−1 of theoretical
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frequencies in table 3. In addition, in this improved method we obtain out-of-plane
frequencies of CH2CDBr as a theoretical result.

The identical approach can be followed if we have no knowledge of the out-of-
plane frequencies of eithercis- or trans-CHDCHBr. In the former case in addition to
the out-of-plane frequencies of poly-deuterated bromoethenes one also obtains out-of-
plane frequencies ofcis-CHDCHBr. Standard deviation of all thus obtained theoretical
frequencies from the experimental frequencies is
c = 2.96 cm−1. In the latter case
in addition to the out-of-plane frequencies of poly-deuterated bromoethenes one also
obtains the out-of-plane frequencies oftrans-CHDCHBr. Standard deviation of all thus
obtained theoretical frequencies from the experimental frequencies is
t = 2.72 cm−1.
The comparison of thus obtained standard deviations
1= 2.84 cm−1,
c = 2.96 cm−1

and
t = 2.72 cm−1 with a standard deviation
 = 2.74 cm−1 shows that by neglecting
one set of the three monodeuterated out-of-plane frequencies one does not deteriorate
the precision of the calculated frequencies in any significant way.

One can even further decrease the number of required experimental frequencies [5].
In the above example we have found three unknown amplitudes〈H1|	z

i 〉 by using six
conditions (19b) and (19c). This was done by minimising the quantity (21). However,
since there are six conditions and only three unknowns, this suggests that we can dismiss
additional three experimental frequencies. This can be really done. However, some
caution is required.

The simplest idea is to use three out-of-plane frequencies of bromoethene C2H3Br
and, for example, three out-of-plane frequencies ofcis-CHDCHBr. However, one finds
that these six experimental frequencies are mutually dependent [5], and this method does
not work. Dependence of these frequencies follows from the product rule [6] that relates
product of the three bromoethene out-of-plane frequencies with the threecis-CHDCHBr
out-of-plane frequencies. Instead of three out-of-plane frequencies of the same deuter-
ated bromoethene, one has to use three out-of-plane frequencies of at least two mutu-
ally different deuterated bromoethenes. Since the number of unknowns now matches
the number of equations, conditions (19) are satisfied exactly, and the standard devi-
ation (21) vanishes. Depending on the choice of experimental frequencies taken into
account, the standard error of thus calculated frequencies varies, but it is in most cases
approximately
 ≈ 5 cm−1. Thus, the precision of the theoretical frequencies deteri-
orates from approximately
 ≈ 3 cm−1 to approximately
 ≈ 5 cm−1. This is the
price one has to pay if there is a paucity of experimental frequencies and if one wants
to calculate various theoretical frequencies from the minimum number of experimental
frequencies. Nevertheless, this is still an acceptable result. The details of this approach
will be given elsewhere [5].

The crucial point in the above approach is derivation of vibrational amplitudes of
bromoethene C2H3Br. Once these amplitudes are obtained, one easily derives frequen-
cies and normal modes of all bromoethene isotopomers. We have shown in tables 3
and 4 how thus obtained frequencies agree with the experimental out-of-plane frequen-
cies of various deuterated bromoethenes. In a similar way out-of-plane frequencies for
all other bromoethene isotopomers can be obtained. Also, using relations (7c) and (8c)
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one obtains in this way all the corresponding normal modes. For the sake of simplicity
we omit the calculation of those normal modes, but it is straightforward.

Using data in tables 2–4 one can also verify that out-of-plane frequencies of
bromoethene and deuterated bromoethenes satisfy interlacing rule. For example, ex-
perimental out-of-plane frequencies of bromoethene C2H3Br (d0) and deuterated bro-
moethene CH2CDBr (d1) that differ by a single isotopic substitution satisfy 551(d1)<

583(d0)< 802(d1)< 902(d0)< 906(d1)< 942(d0) in accord with (14a). Similar agree-
ment is obtained if one compares out-of-plane frequencies of all other bromoethene iso-
topomers that differ by a single isotopic substitution.

7. In-plane vibrations of planar molecules

In the case of in-plane vibrations of planar molecules, relations obtained in [1]
similarly simplify. Thus, one finds thatεxyk /∈ {λxyi } is an in-plane eigenvalue of the
perturbed system if and only if it is a root off xy(ε) ≡ |�xy(ε)+
M−1

2ρ /ε| = 0, where

�xy(ε) and
M−1
2ρ are now 2ρ×2ρ Hermitian matrices. In particular, concerning matrix

elements of�xy(ε) [1], one should take into account that in the case of planar molecules
all z-coordinates of various isotope atoms vanish (zµ = 0). Also, corresponding summa-
tions are performed over(2n − 3) in-plane vibrations	xy

i and eigenvaluesλxyi . Once a
particular in-plane eigenvalueεxyk /∈ {λxyi } is obtained, each perturbed normal mode�

xy

k

corresponding to this eigenvalue is of the form

∣∣�xy

k

〉= 1

ε
xy

k

[
Tx |	Tx〉 + Ty |	Ty〉 + Rz|	Rz〉

]

+
n−3∑
i

∑ρ
τ [〈	xy

i |τx〉Cτx + 〈	xy

i |τy〉Cτy]
ε
xy

k − λxyi
∣∣	xy

i

〉
(23)

in accord with [1, equation (21a)]. Note that in the case of in-plane vibrations, the
componentsCτz of the column vectorC vanish, which impliesTz = 0, Rx = 0 and
Ry = 0. Hence, [1, equation (21a)] simplifies to (23). Also, the coefficientsCτx
and Cτy are components of a 2ρ column vector, solution of the matrix equation
[�(εxyk )−
M−1

2ρ /ε
xy

k ]C = 0.
In the case of a single isotope substitution functionf xy(ε) further simplifies to

f xy(ε) ≡

∣∣∣∣∣∣∣
�xx(ε)+ 1

ε
mτ
�xy(ε)

�yx(ε) �yy(ε)+ 1

ε
mτ

∣∣∣∣∣∣∣ = 0, (24a)
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where

�xx(ε) = 1

ε

[
1

M
+ yτyτ

Iz

]
+

2n−3∑
i

〈τx|	xy

i 〉〈	xy

i |τx〉
ε − λxyi

,

�yy(ε) = 1

ε

[
1

M
+ xτ xτ

Iz

]
+

2n−3∑
i

〈τy|	xy

i 〉〈	xy

i |τy〉
ε − λxyi

,

�xy(ε) = −xτ yτ
εIz
+

2n−3∑
i

〈τx|	xy

i 〉〈	xy

i |τy〉
ε − λxyi

.

(24b)

Similarly, the relation (23) reduces to

∣∣�xy

k

〉= 1

ε
xy

k

[
Cx√
M
|	Tx〉 + Cy√

M
|	Ty〉 + xτCy − yτCx√

Iz
|	Rz〉

]

+
n−3∑
i

〈	xy

i |τx〉Cx + 〈	xy

i |τy〉Cy
ε
xy

k − λxyi
∣∣	xy

i

〉
,

whereεxyk is a root off xy(ε), and where(Cx,Cy) is a (nontrivial) solution of a matrix
equation 


�xx

(
ε
xy

k

)+ 1

ε
xy

k 
mτ
�xy

(
ε
xy

k

)
�yx

(
ε
xy

k

)
�yy

(
ε
xy

k

)+ 1

ε
xy

k 
mτ



[

Cx

Cy

]
= 0.

The above relations again express the perturbed frequencies and normal modes in
terms of the unperturbed frequencies and normal modes. Thus, if the unperturbed fre-
quencies and amplitudes of the unperturbed normal modes at the sites of isotopic sub-
stitutions are known, one can obtain frequencies and normal modes of all isotopomers.
However, in the case of in-plane vibrations, there is no analogy to a simple inversion
relation (16) by which one can obtain amplitudes of the unperturbed vibrations at the se-
lected isotopic site. Unlike out-of-plane vibrations	z

i , each in-plane vibration	xy

i has
at the atomic siteτ two components, an amplitude〈τx|	xy

i 〉 and an amplitude〈τy |	xy

i 〉.
This is double as many amplitudes as in the case of the out-of-plane vibrations, and ac-
cordingly�xy is a 2ρ × 2ρ matrix. Since there are(2n− 3) proper in-plane vibrations,
one has to determine 2(2n−3) in-plane amplitudes at atomic siteτ . In the case of a sin-
gle isotope substitution at the atomic siteτ , the relation (24a) is satisfied by(2n − 3)
planar isotope vibrations, and this is not sufficient to determine all in-plane amplitudes.
However, if we have two isotope substitutions at the same siteτ , for example, deuterium
and tritium substituting hydrogen, then we have at the disposal 2(2n − 3) experimen-
tal planar isotope frequencies, and this should be sufficient to invert relation (24a) in
order to determine planar amplitudes. However, the obtained relations are much more
complicated than a simple inversion relation (16). Nevertheless, this shows that one
can obtain in-plane amplitudes at a siteτ if one knows experimental in-plane frequen-
cies of two isotopomers that differ from the unperturbed molecule at a single site. In
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many cases molecular symmetry may help to determine in-plane vibrational amplitudes.
Alternatively, one can obtain the necessary information from in-plane frequencies of se-
lected bi-substituted isotopomers, etc. [5]. Finally, one can deduce these amplitudes in
a standard way using some force field model. Once these amplitudes are obtained in
either way, the LRP approach provides a simple and a straightforward method to derive
in-plane frequencies and the corresponding normal modes for all isotopomers.

Unlike inversion relation, there is a simple and straightforward generalisation of
the interlacing rule to in-plane frequencies of planar molecules, and more generally, to
frequencies of arbitrary (nonplanar) molecule.

Consider two planar moleculesA andBτ that are identical, except for a single iso-
topic substitution at siteτ . Let moleculeBτ be heavier than moleculeA. Relation (24)
relates in-plane frequencies of a moleculeA with in-plane frequencies of a moleculeBτ .
Transition fromA toBτ is in this relation due to the increase
mτ of the isotopic mass.
The same mass increase is associated withx- and withy-direction. Formally, one can
consider transition fromA to Bτ in two steps, transition fromA to intermediate “mole-
cule” C, and transition fromC to Bτ . MoleculeC has an “isotope” at the siteτ with
mass increase
mτ associated withx-direction, but no mass increase associated with the
y-direction. This molecule is a mathematical construct, but not a real molecule. Never-
theless, transition fromA to C is described by the relations analogous to relations (9),
which imply interlacing rule (14a). Hence, as far as interlacing rule for in-plane vibra-
tions is concerned, transition fromA to Bτ is equivalent to a sequence of two simple
transitions: a transition fromA to C and a subsequent transition fromC to Bτ . It fol-
lows that, ifνxzk andωxzk are in-plane frequencies of a moleculesA andBτ , respectively,
and if these frequencies are arranged in the nondecreasing order, then

νxzk−2 � ωxzk � νxzk . (14c)

In a similar way one finds that frequencies of arbitrary (nonplanar) isotopic mole-
culesA andBτ that differ by a single isotopic substitution such that moleculeBτ is
heavier than moleculeA, are interlaced according to

νk−3 � ωk � νk. (14d)

Relations (14c) and (14d) apply to a single isotopic substitution. It is straight-
forward to generalise these relations to arbitrary isotopic moleculesA andB that dif-
fer by multiple isotopic substitutions. Relations thus obtained are very similar to rela-
tions (14b). In the case of interlacing in-plane vibrations of planar molecules one should
replace quantitiesρ andη in (14b) with 2ρ and 2η, respectively, while in the case of
interlacing vibrations of arbitrary (nonplanar) molecules one should replace these quan-
tities with 3ρ and 3η, respectively.

8. Conclusion

The general theory of vibrational isotope effect developed in the previous [1] is
applied to the vibrational isotope effect of linear and planar molecules. Stretching and
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bending vibrations of linear molecules and out-of-plane vibrations of planar molecules
were explicitly considered. The interlacing rule which interlaces the frequencies of the
perturbed system and the frequencies of the unperturbed system is derived. This rule
applies to the stretching (bending) frequencies of linear molecules, as well as to the out-
of-plane frequencies of the planar molecules. The rule is particularly simple if molecules
A andBτ differ by a single isotopic substitution at the siteτ , but it applies also to
a general case of two isotopic moleculesA andB that differ by an arbitrary number
of isotopic substitutions. The rule is also generalised to in-plane vibrations of planar
molecules, as well as to arbitrary (nonplanar) molecules.

Given a pair of linear (planar) isotopic moleculesA andBτ that differ by a single
isotopic substitution at the siteτ , inversion relation that expresses squares of the un-
perturbed vibrational amplitudes at the siteτ in terms of the vibrational frequencies of
moleculesA andBτ are derived. The inversion relation applies to the stretching and
bending vibrations of linear molecules, as well as to the out-of-plane vibrations of pla-
nar molecules. Thus, using only experimental quantities, for example, out-of-plane fre-
quencies of moleculesA andBτ , one can calculate squares of unperturbed out-of-plane
amplitudes at the selected atomic sitesτ . By using some additional information, such as
the requirement that all vibrations be normalised and mutually orthogonal, one can de-
rive also relative signs of these amplitudes at different atomic sites. In this way isotopic
moleculeBτ , or rather out-of-plane frequencies of this molecule, serve as a probe to de-
termine unperturbed amplitudes at this site. Thus, using various isotopic moleculesBτ
as a probe, one can obtain unperturbed out-of-plane amplitudes at selected atomic sites.
Once these amplitudes are known, one can calculate out-of-plane frequencies and the
corresponding normal modes for all isotopomers that involve these selected sites.

As an example we have considered out-of-plane vibrations of bromoethene and
deuterated bromoethenes. Two methods were explicitly considered. In the first method
three inversion relations were used in order to obtain bromoethene out-of-plane vibra-
tional amplitudes at three hydrogen atoms. This requires 12 experimental out-of-plane
frequencies, three bromoethene out-of-plane frequencies, and three out-of-plane fre-
quencies for each of the three monodeuterated bromoethenes CH2CDBr, cis-CHDCHBr
and trans-CHDCHBr. Relative signs of these amplitudes were obtained by imposing
the requirement that these vibrations be normalised and mutually orthogonal. In addi-
tion, requirement of the orthogonality of these out-of-plane vibrations to three nonproper
vibrations produces vibrational amplitudes at the sites of the two carbon atoms and a
bromium atom. In this way all amplitudes of the bromoethene out-of-plane vibrations
were derived. Once these amplitudes are obtained, one can calculate frequencies and
normal modes for all bromoethene isotopomers. We have done this for deuterated bro-
moethenes. In this way the out-of-plane frequencies of CD2CHBr,cis-CHDCDBr,trans-
CHDCDBr and CD2CDBr were calculated. Standard deviation of thus obtained theoret-
ical frequencies from experimental frequencies is only
 = 2.74 cm−1. In the second
method only out-of-plane experimental frequencies of bromoethene andcis-CHDCHBr
and trans-CHDCHBr were used, but out-of-plane frequencies of CH2CDBr were as-
sumed unknown. In this method in addition to the out-of-plane frequencies of all
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polydeuterated bromoethenes, one obtains as a bonus out-of-plane frequencies of mon-
odeuterated bromoethene CH2CDBr. Standard deviation of thus obtained theoretical
frequencies from experimental frequencies is
1 = 2.84 cm−1. The same method can
be applied to the case when we have no knowledge of thecis-CHDCHBr out-of-plane
frequencies (
c = 2.96 cm−1), or no knowledge oftrans-CHDCHBr out-of-plane fre-
quencies (
t = 2.72 cm−1). In all three cases nine experimental out-of-plane frequen-
cies were used in order to calculate 15 out-of-plane frequencies. Theoretical frequencies
thus obtained are in very good agreement with experimental frequencies, standard devi-
ation in all three cases being less than
 = 3 cm−1.

It is possible to decrease the number of required experimental frequencies even
further, and to use only six experimental frequencies in order to calculate 18 out-of-
plane frequencies. If this is done one finds that the standard deviation of thus calculated
frequencies from experimental frequencies is approximately
 ≈ 5 cm−1. This deterio-
ration of theoretical results from
 ≈ 3 cm−1 to
 ≈ 5 cm−1 is a price one has to pay in
order to decrease the number of experimental frequencies which are used as input data
as much as possible.

Once the amplitudes of the unperturbed vibrations are obtained in either way, be-
sides frequencies of various isotopomers one can also obtain all the corresponding nor-
mal modes. For the sake of simplicity this is not done in the present paper. However,
the use of formulas (7) and (8) in the case of linear and planar molecules, as well as
corresponding formulas in the case of arbitrary molecules [1] is straightforward.

In conclusion, the suggested LRP method provides a general formalism to treat
vibrational isotopic effect in the harmonic approximation. This treatment is particularly
simple in the case of linear molecules and in the case of out-of-plane vibrations of planar
molecules.
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